

ASX / MEDIA ANNOUNCEMENT (ASX:JNO)

27 JULY 2023

QUARTERLY ACTIVITIES REPORT FOR THE QUARTER ENDED 30 JUNE 2023

HIGHLIGHTS

- Non-Binding MOU executed with Southern Ports Authority for access to capacity in the iron ore circuit at Esperance Port.
- The MOU allows Juno to work with the Port on key deliverables to seek an allocation of 1.5mtpa capacity through the iron ore circuit.
- The design work on the Yunndaga Rail Siding has progressed.
- Meetings with potential metal traders to market Mount Mason DSO and provide a hedging line.
- Lithium initial prospectivity exploration groundwork completed at Mount Ida:
 - Geological mapping.
 - First pass broad spaced RC drill program completed.
 - Broad spaced soil sampling program 3 km long by 0.5 to 1 km wide north-south trending geochemical anomaly identified.
 - Targeted infill soil sampling completed on anomaly, samples in for assay.
 - Exploration drill targets to be developed from infill soil sample analysis.

MOUNT MASON DSO HEMATITE PROJECT

Juno Minerals Limited (**Juno** or the **Company**) is progressing the Mount Mason DSO Hematite Project (the **Mount Mason Project** or **Project**), which is a high-grade direct shipping ore (**DSO**) hematite, near-term project. The Project is located 130km by road northwest of the town of Menzies, Western Australia.

Logistics and Supply Chain

With the Project now fully approved for development, and with DSO export capacity in the iron ore circuit now available at the Esperance Port, Juno executed a Non-Binding Memorandum of Understanding (**MOU**) with Southern Ports Authority (**SPA**) in June 2023 to work on key deliverables to seek an allocation of 1.5mtpa capacity.

As advised in the March quarter, Juno received from Arc Infrastructure Pty Ltd (**Arc**) updated Non-Binding Indicative Track Pricing for 1.35mtpa capacity rail track access into Esperance Port, at an agreed commencement date, from a new planned rail siding at Yunndaga. Tariffs will be required to be negotiated at the appropriate time for a binding track access agreement which requires final approval from Arc.

This completes the logistics supply chain requirements to facilitate the development of the Mount Mason Project, and now identified minor works at the Esperance Port to facilitate shed space and access, will be

designed and costed. Juno will actively participate in working with the SPA on addressing these requirements.

Juno plans to develop the Yunndaga Rail Siding from Project commencement, reducing road haul distance from 287 to 137 kilometres, whilst offsetting this with an increase in rail haul distance from 125 to 508 kilometres, significantly reducing operating costs.

The 85% design level on both the rail crossing and siding has progressed with guidelines and the requirements from Arc being incorporated. The relevant Siding Connection Licence and other agreements that may apply in regarding connection of the siding into Leonora mainline, the Arc Network, are also being progressed with Arc.

DSO Marketing

Juno, in conjunction with Argonaut its financial advisors, commenced a process with the major metal traders in selling the DSO produced from Mount Mason with the requirement of offering potential debt finance and securing hedging at the right time of higher iron ore prices. Mount Mason DSO production is planned at 1.35mtpa, which being a small and higher cost producer compared to the majors, is required to ensure continued and profitable operations.

MOUNT IDA MAGNETITE PROJECT

The Mount Ida Magnetite Project (the **Mount Ida Project**) is a large and significant project, which presents a great opportunity to become a long-life magnetite mine. The Company has commenced a process to attract a major partner to earn in at project level, with the capacity to complete the Feasibility Study and develop the project. This process is continuing.

MOUNT IDA PROJECT AREA – LITHIUM PROSPECTIVITY EVALUATION

In consideration of lithium pegmatite discoveries in the Mount Ida region, and the increased exploration activity and interest in the Mount Ida north-south trending fault zone, Juno's Mount Ida tenure was geologically mapped during the period, and an initial broad-based drilling and soil sampling program was undertaken.

Geological Mapping and Pegmatite Sampling

Dr Mike Grigson of Arc Minerals Consultants was commissioned to undertake a comprehensive geological mapping and sampling program within mining lease M29/414 to provide a detailed understanding of the geological setting and the potential controls on spodumene-bearing rare metal pegmatites, and from this develop targets for ongoing exploration activities. Dr Grigson has continued to map Pilbara Minerals' Pilgangoora Project since 2015 and has mapped Wodgina for the previous owners. The mapping at Mount Ida was conducted over 12 days. An executive summary of the report is included at Appendix 1 and assay results of the 14 pegmatite samples taken are in Appendix 2.

The report states the most favourable setting for rare-metal pegmatite intrusions is in Block A is the western part of the trace of Fault 1 which is covered by a 2 km-long, >400 m-wide tract of transported overburden and presents a drilling target zone which may delineate blind rare-metal pegmatite intrusions.

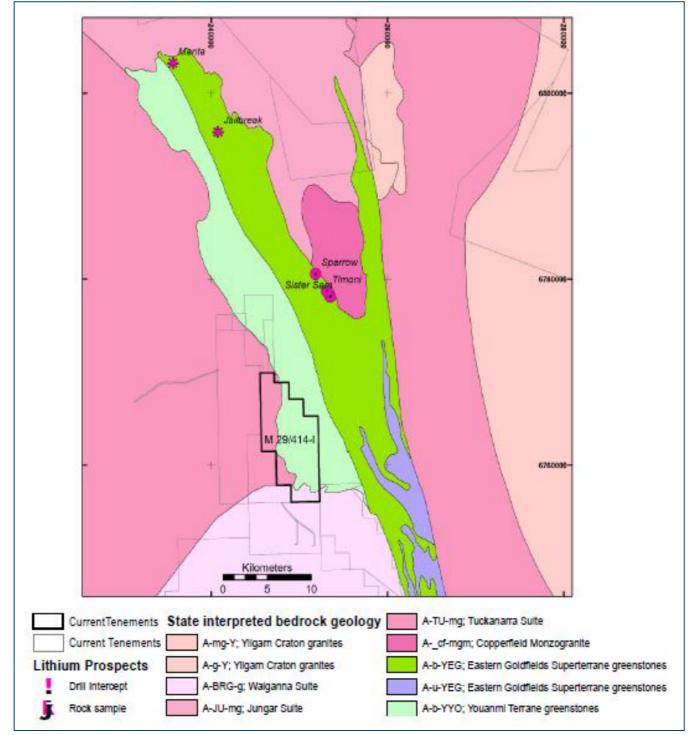


Figure 1: Regional geological map of the Mount Ida greenstone belt, showing location of M29/414 and the exploration projects that have recently returned significant lithium assays (geological map data derived from GSWA 1:2.5m state geological interpretation).

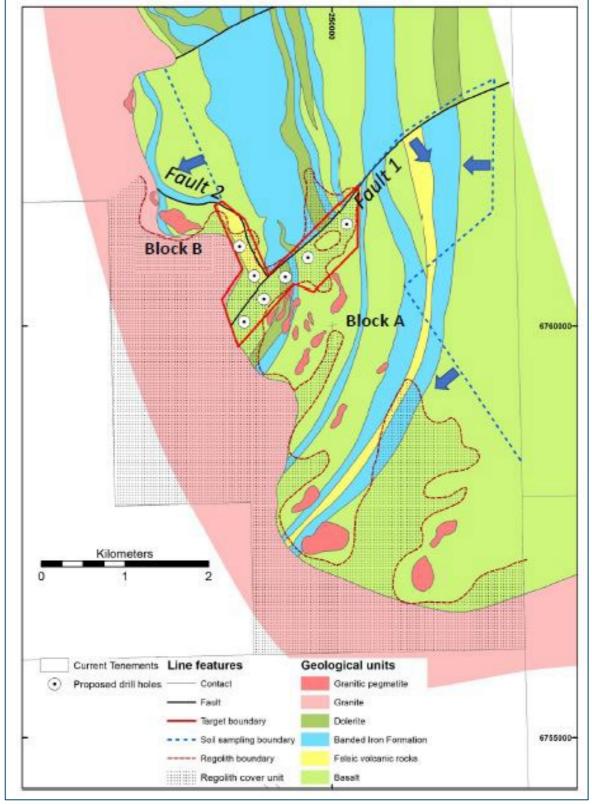
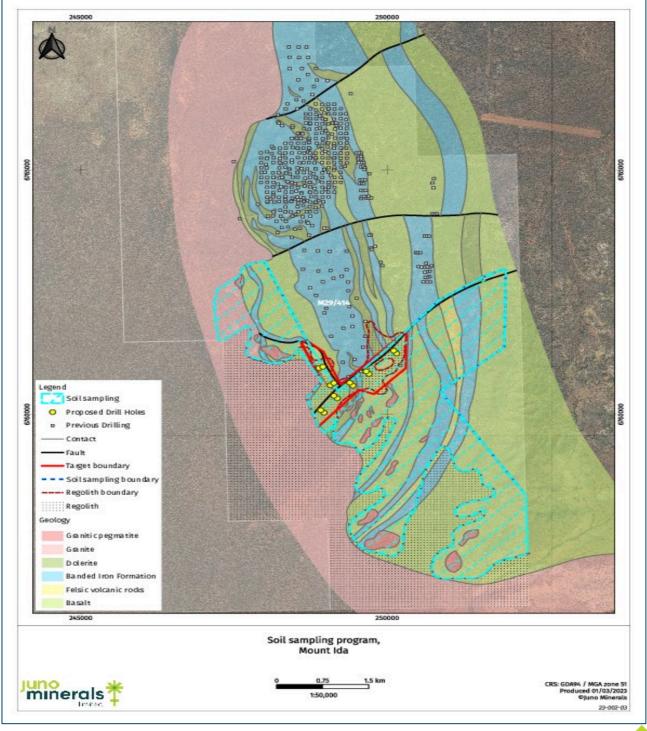



Figure 2: Outline of target areas and exploration methods

An additional target for drilling is recognised to the west of Fault 2, within the transported cover over Block B. If present, rare-metal pegmatites are likely to dip towards the west south-west, in the direction opposite to the dip of the foliation.

Both the broad-based drill and systematic soil sampling was completed as shown in Figure 3. The drill program in-conjunction with the soil sampling may delineate geochemical trends that can be used to further refine the interpretation of the structural setting within Block A and generate further drill targets.

RC Drill Program

The designed drill program was a total of 14 RC holes with a drill target depth of 100 m. From the 14 holes drilled a total of 13 holes intersected pegmatites. The pegmatites were submitted for assay, however no elevated LCT mineral values were recorded. The pegmatite intersections are documented in Appendix 3.

Soil Sampling Program

The area south of Fault 1 was deemed on the structural grounds to have moderate potential for the discovery of rare metal pegmatites, subsequently a broad spaced soil sampling program on 500 by 100 m centres was completed, as shown in Figure 4 as Phase 1 Soils. The sampling program comprised the collection of 244 samples, which were subsequently submitted to LabWest for the assaying of the ultrafine fraction (<2 micron) by ICP-MS.

Dr Grigson modelled the assay data resulting from the (Phase 1) soil sampling program and presented them as a series of symbological overlays draped upon the base geological map. The soil sampling program defined a north-south geochemical trending anomaly for 3 km with a width of 0.5 to 1 km, interpretation of the various elements is summarised below, and the overlays are shown in Appendix 4, and the soil sample results in Appendix 5. Source information below is from Dr Grigson's report:

"Geological setting and controls on pegmatite intrusions in the Mount Ida project area, Western Australia. *A* report to Juno Minerals Limited on the findings mapping and sampling, and proposals for further exploration".

"Rare-metal pegmatite association: lithium, beryllium, caesium, rubidium, and tin

These metals are important components of spodumene-bearing pegmatite, but they also occur in lower concentrations in muscovite-rich granitic pegmatite, such as those intrusions that are widely distributed with southern part of M29/414. As shown in figures AI1-AI15¹, the distribution patterns of these elements in the soil horizon are broadly similar, and the most elevated concentrations define a north-south trending geochemical anomaly that extends southward from Fault 1 for almost 3 km, over a width of 0.5 to 1 km. Figure AI6 presents a calculated enrichment factor for all metals, with added weight given to the concentration of lithium and beryllium (factor for sample point =(Li x 4.2) + (Cs x 11.3) + (Be x 70) + (Rb x 1) + (Sn x 32.7). Using this treatment defines an anomaly shape that is almost identical to that defined by raw lithium assays.

Parts of the Li-Be-Cs-Rb-Sn geochemical anomaly overlie outcropping granitic pegmatite intrusions, and thus some of the metals in the soil horizon may have been contained within the muscovite fragments derived from the erosion of these intrusions. Nonetheless, the northern end of the anomaly, near Fault 1, is largely developed over thicker soil cover, in an area that is devoid of granitic pegmatite intrusions, and thus the metals in the soil horizon may reflect a different bedrock source, such as rare-metal pegmatites. Moreover, it is noted that, outside of the extent of the defined geochemical anomaly, the soil sampling traversed large tracts of outcropping granitic pegmatite that do not express as obvious metal enrichments in the soil horizon. This gives weight to the supposition that the geochemical anomaly reflects an array of late-stage pegmatite intrusions, that were superimposed upon the more extensive field of granitic pegmatites.

Aplite association: tantalum and niobium

These metals are typically associated with aplite, as infiltrations or cross cutting intrusions, in either granitic pegmatite (low Ta and Nb grades) or spodumene-bearing pegmatites (high grades; > 200 ppm). The distribution patterns of these metals in the soil horizon are broadly similar (Figs AI7 & AI8), and for most part of the anomalies defined by the sampling directly overlie exposed granitic pegmatite intrusions that are known to contain significant proportions of late-stage aplite. Interestingly, the Ta and Nb anomalies do not obviously overlap with the main Li-Be-CS-Rb-Sn geochemical anomaly, which is unexplained, but it does provide encouragement in terms of the potential preservation of metallurgically benign, coarse-grained, spodumene-bearing pegmatite in the bedrock underlying the main anomaly. In known deposits elsewhere, and abundance of Ta-Nb aplite in spodumene-bearing pegmatite is typically associated with poorer lithium recoveries."

Next Steps

A targeted infill soil sampling program on 100 by 100 metre centres, Phase 2 Soils, also shown in Figure 4, have been completed and are currently in for assay. Once the results have been received these will be modelled in-conjunction with the RC drill program data and the geological mapping to evaluate further on the groundwork required and to generate targets for further exploration drilling.

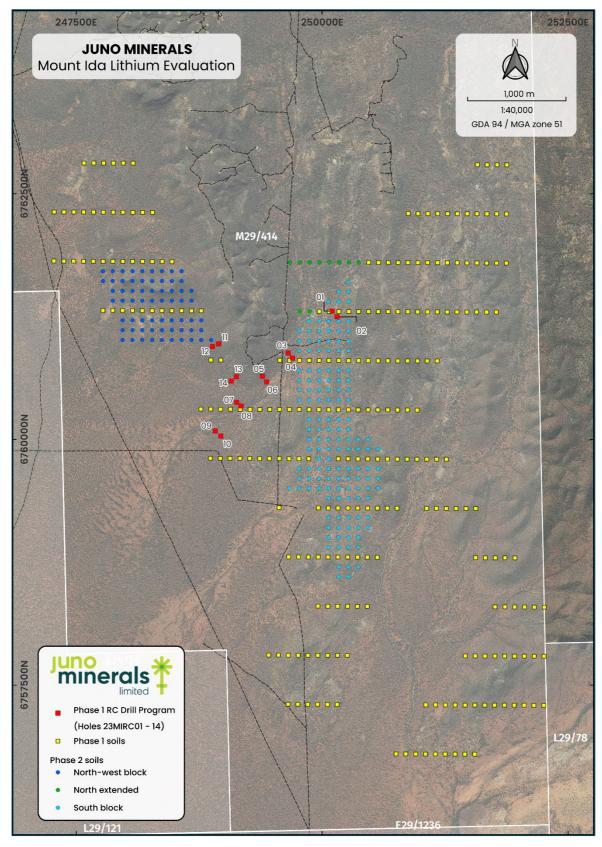


Figure 4: Phase 1 and 2 Soil sampling areas and Phase 1 RC drill holes

CORPORATE

Juno ended the June 2023 quarter with \$1,605,764 in cash and deposits. In accordance with ASX Listing Rule 5.3.5, \$115,352 of payments were made to related parties or their associates during the quarter, comprising Executive Director salary, Non-executive Director fees and superannuation.

In accordance with ASX Listing Rule 5.3.4, as the June quarter was in a period covered by a "Use of Funds" statement in the Replacement Prospectus, below is a comparison of the Company's actual expenditure to 30 June 2023 against the estimated expenditure in the "Use of Funds" statement and Statement of Commitments in the Company's Pre-Quotation Disclosure on 12 May 2021. This is the final period for reporting against the "Use of Funds Statement":

\$	Expenditure Program	Jun-21 Quarter	Sept-21 Quarter	Dec-21 Quarter	Mar-22 Quarter	Jun-22 Quarter	Sept-22 Quarter	Dec-22 Quarter	Mar-23 Quarter	Jun-23 Quarter	Actual to Date
1. Costs of the Offer	348,504	350,226	111,471	-	-	-	-	-	-	-	461,697
2. Corporate overheads – CEO Salary and Secondment Fee	648,958	26,735	80,587	74,203	98,068	96,250	72,588	75,879	74,828	106,042	705,180
3. Tenure costs											-
 Mining tenement annual rent 	1,092,904	54,397	254,796	203,821	82,805	59,363	309,455	232,440	123,530	157,789	1,478,396
Shire Rates	549,691	-	274,739	-	-	-	312,883	-	-	-	587,622
Cassini Village supplies and maintenance	261,549	38,533	(8,010)	27,395	25,864	27,528	160,897	(155,722)	7,026	(16,946)	106,565
4. Contract tendering and documentation	317,000	212,852	322,090	101,632	-	-	4,580	6,233	4,708	-	652,095
5. Company, project an	d operations manag	gement costs						•		•	
Operations and Project Management – Direct Costs	270,000	7,996	23,561	5,836	5,830	12,608	47,796	25,201	5,328	15,921	150,077
• Technical consultants, mining, crushing,	200,000	130,076	335,766	124,984	22,788	151,220	41,804	123,056	22,853	30,641	983,188

\$	Expenditure Program	Jun-21 Quarter	Sept-21 Quarter	Dec-21 Quarter	Mar-22 Quarter	Jun-22 Quarter	Sept-22 Quarter	Dec-22 Quarter	Mar-23 Quarter	Jun-23 Quarter	Actual to Date
environmental, power supply											
Legal fees – supply and services contracts	30,000	27,313	35,280	1,906	-	-	-	-	-		64,499
6. Project execution	-	-	-	-	-	-	-	-	-		-
7. Cassini Village expansion	-	-	-	-	-	-	-		-	-	-
8. Construction of site access road to Menzies – Sandstone Road	-	-	-	-	-	-	-	-	-	-	-
9. Geophysical review and DSO targeting surveys	300,000	-	-	-	-	-	-	-	-	-	-
10. Drill testing of the identified DSO targets	400,000	-	-	-	-	-	-	-	-	-	-
11. Mt Ida – water exploration tenements – hydrogeological review	100,000	-	-	7,407	3,504	1,544	2,431	1,931	1,016	2,846	20,679

\$	Expenditure Program	Jun-21 Quarter	Sept-21 Quarter	Dec-21 Quarter	Mar-22 Quarter	Jun-22 Quarter	Sept-22 Quarter	Dec-22 Quarter	Mar-23 Quarter	Jun-23 Quarter	Actual to Date
12. Mt Ida – metallurgical test work	200,000	-	-	-	-	-	-	-	-	-	-
13. Mt Ida – other exploration	-	-	-	-	-	-	-	48,362	14,710	91,845	154,917
14. Working capital					·	·					
Corporate overheads	1,598,128	288,475	154,270	269,753	94,744	272,826	142,031	230,840	140,565	350,318	1,943,822
Operations and Project Management- Direct Costs	430,000	-	-	-	-	-	-	-	-	-	-
Legal fees – supply and services contracts	50,000	-	-	-	-	-	-	-	-	-	-
Project execution	675,000	-	-	-	-	-	-	-	-	-	-
Cassini Village expansion	1,442,767	-	-	-	-	-	-	-	-	-	-
Total Expenditure	\$8,914,501	\$1,136,603	\$1,584,550	\$816,937	\$333,604	\$621,339	\$1,094,465	\$588,220	\$394,563	\$738,455	\$7,308,736

This announcement has been approved for release by the Board. CONTACTS Investor Relations Greg Durack – Managing Director and CEO P: + 61(0)8 9346 5599 E: investorrelations@junominerals.com.au

FORWARD LOOKING STATEMENTS AND IMPORTANT NOTICE

This announcement may contain some references to forecasts, estimates, assumptions and other forward-looking statements. Although the Company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved. They may be affected by a variety of variables and changes in underlying assumptions that are subject to risk factors associated with the nature of the business, which could cause actual results to differ materially from those expressed herein. All references to dollars (\$) and cents in this announcement are to Australian currency, unless otherwise stated

APPENDIX 1 – Executive Summary

Geological setting and controls on pegmatite intrusions in the Mount Ida project area, Western Australia.

A report to Juno Minerals Limited on the findings of mapping and sampling, and proposals for further exploration (Dr Mike Grigson, Arc Mineral Consultants).

Executive Summary

This report presents the findings of a geological mapping and pegmatite sampling program within M29/414, which comprises a large part of the Mount Ida iron-ore project being developed by Juno Minerals Limited. The objectives of this work were to provide a detailed understanding of the geological setting and the potential controls on spodumene-bearing rare-metal pegmatites, and from this develop targets for ongoing exploration activities.

Mapping shows that the structural architecture of the area encompassed by M29/414 bears many similarities to the settings of the large rare-metal pegmatite fields at Pilgangoora and Wodgina in the Pilbara. The most conspicuous features at Mount Ida are a series of large northeast-southwest trending cross faults that disrupt the monoclinal, east-dipping sequence of banded iron formation and basalt units. The southernmost of these faults (Fault 1) extends for over 4 km and it is marked by abrupt changes in the thickness and attitude of banded iron formation units. The shear-zone fabrics measured north and south of Fault 1 indicate that this structure exerted a profound influence upon ductile shear-zone deformation. Importantly, discordant faults and abrupt changes in shear-zone geometry are known to be important spatial controls on intrusions within the pegmatite fields in the Pilbara.

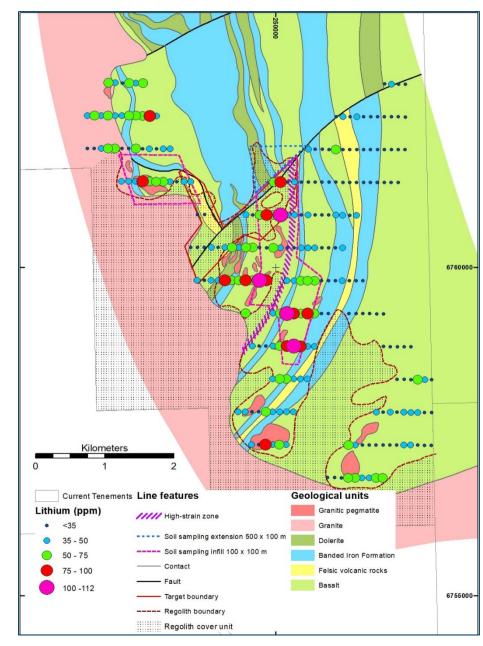
The pegmatites that crop out south of Fault 1 within M29/414 are classified as granitic pegmatites, with a significant component of late-stage aplite injections. Analyses of rock-chip samples of the granitic pegmatites collected by Juno Minerals and the author did not return significant assays for lithium and other rare metals, which supports their petrological classification. Nonetheless, the geochemistry of the granitic pegmatites and aplite are entirely consistent with their highly deformed state and observed textural evidence for muscovite and microcline breakdown processes. Such processes are recognised as a fundamental step in the generation of rare-metal bearing magmas at the crustal scale, and this can explain the almost universal association between deformed granitic pegmatites, aplites, and rare-metal pegmatites in most large pegmatite fields, including all the large Archaean spodumene-bearing deposits in Western Australia. At Mount Ida, two of the important components of a viable pegmatite mineral system have been identified in outcrop, but rare-metal pegmatites are not observed. The textural state of the granitic pegmatites and the presence of aplite essentially dictate that at some stage during ductile shear-zone deformation event at Mount Ida there were rare-metal bearing melts ascending through the shear-zone network. The sites of rare-metal pegmatite emplacement are known (from mapping at Pilgangoora and Wodgina) to be more tightly controlled by shear zone geometry when compared to broader distribution of granitic pegmatites and aplite. Thus, there is the potential that blind rare-metal pegmatite intrusions are obscured by broad tracts of surficial cover within M29/414.

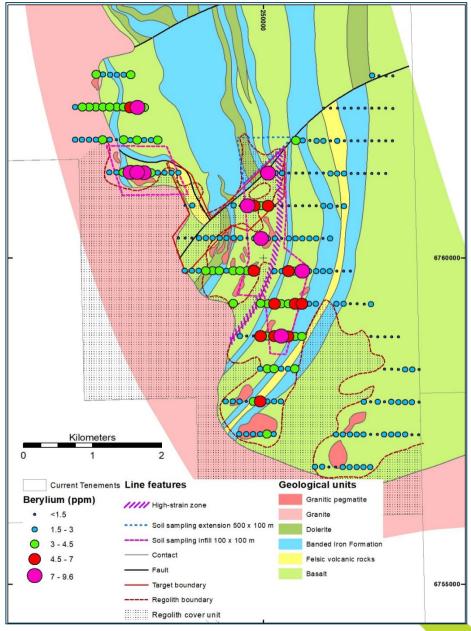
In the above context, analysis of structural mapping data collected within M29/414 suggests that the most likely setting for the emplacement of rare-metal pegmatite intrusions was immediately south of Fault 1. The configuration of geometric elements in the shear zones south of this fault points to localised transtension during ductile deformation. Conceivably this favoured normal-slip shear zone motions and could have triggered the dilational filling of tensile fractures by rare-metal bearing melts. Much of the interpreted surface trace of Fault 1 is obscured by surficial overburden. However, reasonable inferences can be drawn regarding the likely geometry of blind rare-metal pegmatite intrusions in this setting, and these factors are incorporated into a drilling program designed to test the target area south of Fault 1. The terrain further south of Fault 1 is amenable to systematic, broad-spaced soil sampling, and the resulting geochemical data could be usefully employed to undertake further drill targeting.

APPENDIX 2 – Pegmatite Rock Chip Sampling Assays (Arc Minerals Program)

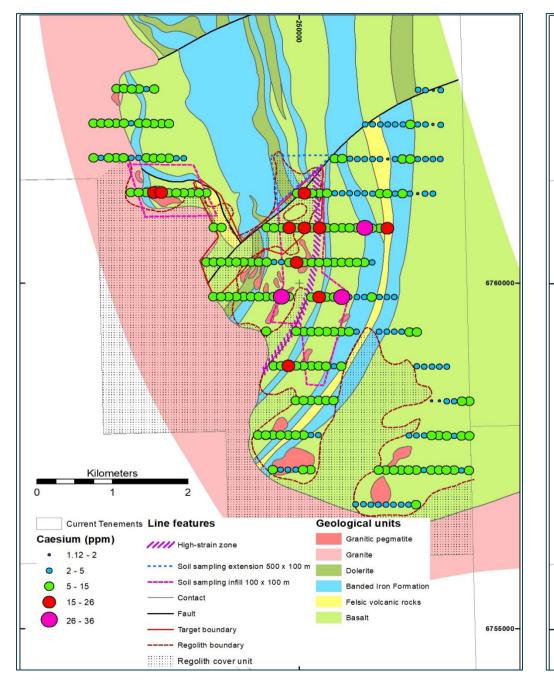
Sample Id	East	North
MIR001	247597	6762744
MIR002	247620	6762823
MIR003	247607	6762609
MIR004	248258	6761176
MIR005	248180	6761280
MIR006	248100	6761303
MIR007	248065	6761322
MIR008	250703	6760320
MIR009	250098	6760282
MIR010	249799	6757984
MIR011	249816	6757780
MIR012	249827	6757373
MIR013	250811	6757120
MIR014	251285	6757576

	Li2O	Be	Cs	F	Та	U	As	Sn	Nb	Rb	Mg
Method	ICP004	ICP004	ICP004	ISE003	ICP004						
Units	ppm										
LLD	10	1	1	200	1	0.5	10	1	5	1	100
MIR-001	30	4	13	200	10	2.5	10	3	35	595	<100
MIR-002	20	3	2	200	3	4.0	20	4	20	130	<100
MIR-003	<10	2	2	200	4	1.5	<10	18	50	139	100
MIR-004	40	6	2	400	5	1.5	10	13	60	348	200
MIR-005	<10	3	2	200	4	2.0	20	5	60	306	<100
MIR-006	30	5	4	<200	10	1.5	10	8	85	310	200
MIR-007	90	5	5	600	10	3.5	<10	11	60	618	<100
MIR-008	20	51	16	<200	60	5.0	<10	2	55	1768	<100
MIR-009	<10	175	3	<200	79	5.5	<10	7	60	128	<100
MIR-010	20	4	5	<200	10	3.5	<10	2	60	276	<100
MIR-011	20	4	4	<200	52	2.0	<10	<1	105	350	<100
MIR-012	20	4	4	<200	14	2.5	10	<1	60	417	<100
MIR-013	<10	4	9	<200	3	1.0	<10	7	50	431	<100
MIR-014	10	15	2	<200	13	5.0	<10	1	60	49	300
MIR-014 REP	20	15	2		12	4.5	<10	1	60	46	100
MIR-008 REP				<200							


APPENDIX 3 – Pegmatite Intercepts


BHID	Northing (GDA94)	Easting (GDA94)	RL (m)	Drillhole Azi	Drillhole Dip	E.O.H (m)	From (m)	To (m)	Interval (m)	Significant Intercepts (Li2O)	Lithology
23MIRC01	250103	6761306	460	315	-60	100	41	44	3	N/A	Pegmatite
							49	51	2	N/A	Pegmatite
							59	60	1	N/A	Pegmatite
23MIRC03	249657	6760880	451	315	-60	100	57	61	4	N/A	Pegmatite
23MIRC04	249700	6760827	450	315	-60	100	21	23	2	N/A	Pegmatite
							72	73	1	N/A	Pegmatite
							88	91	3	N/A	Pegmatite
							93	94	1	N/A	Pegmatite
23MIRC05	249394	6760642	447	315	-60	108	10	12	2	N/A	Pegmatite
							30	39	9	N/A	Pegmatite
							45	48	3	N/A	Pegmatite
							49	54	5	N/A	Pegmatite
							56	57	1	N/A	Pegmatite
							60	63	3	N/A	Pegmatite
							65	67	2	N/A	Pegmatite
							75	76	1	N/A	Pegmatite
							76	82	6	N/A	Pegmatite
23MIRC06	249437	6760584	444	315	-60	100	33	35	2	N/A	Pegmatite
							56	65	9	N/A	Pegmatite
							67	72	5	N/A	Pegmatite
							72	77	5	N/A	Pegmatite
							83	85	2	N/A	Pegmatite
23MIRC07	249132	6760376	449	315	-60	114	19	21	2	N/A	Pegmatite
							84	107	23	N/A	Pegmatite
23MIRC08	249177	6760340	444	315	-60	100	60	84	24	N/A	Pegmatite
23MIRC09	248914	6760086	443	315	-60	108	3	29	26	N/A	Pegmatite
							57	58	1	N/A	Pegmatite
							66	67	1	N/A	Pegmatite
							79	86	7	N/A	Pegmatite
							89	90	1	N/A	Pegmatite
							92	95	3	N/A	Pegmatite
							95	96	1	N/A	Pegmatite
							97	102	5	N/A	Pegmatite
							105	107	2	N/A	Pegmatite
23MIRC10	248970	6760033	443	315	-60	108	13	14	1	N/A	Pegmatite
							16	19	3	N/A	Pegmatite
							22	23	1	N/A	Pegmatite
							28	31	3	N/A	Pegmatite

BHID	Northing (GDA94)	Easting (GDA94)	RL (m)	Drillhole Azi	Drillhole Dip	E.O.H (m)	From (m)	To (m)	Interval (m)	Significant Intercepts (Li2O)	Lithology
							37	42	5	N/A	Pegmatite
							58	64	6	N/A	Pegmatite
							75	78	3	N/A	Pegmatite
							81	83	2	N/A	Pegmatite
							87	89	2	N/A	Pegmatite
							90	98	8	N/A	Pegmatite
23MIRC11	248947	6760973	454	70	-60	100	6	13	7	N/A	Pegmatite
							15	20	5	N/A	Pegmatite
							45	46	1	N/A	Pegmatite
							51	57	6	N/A	Pegmatite
23MIRC12	248885	6760945	459	70	-60	134	32	36	4	N/A	Pegmatite
							42	54	12	N/A	Pegmatite
							76	78	2	N/A	Pegmatite
							80	134	54	N/A	Pegmatite
23MIRC13	249129	6760639	441	55	-60	114	14	15	1	N/A	Pegmatite
							19	25	6	N/A	Pegmatite
							51	56	5	N/A	Pegmatite
							68	69	1	N/A	Pegmatite
							76	78	2	N/A	Pegmatite
							82	83	1	N/A	Pegmatite
							84	108	24	N/A	Pegmatite
23MIRC14	249077	6760594	443	55	-60	100	6	76	70	N/A	Pegmatite



APPENDIX 4 – Soil Sampling Overlays

Figure 5: Lithium

Figure 6: Berylium

Page | 18

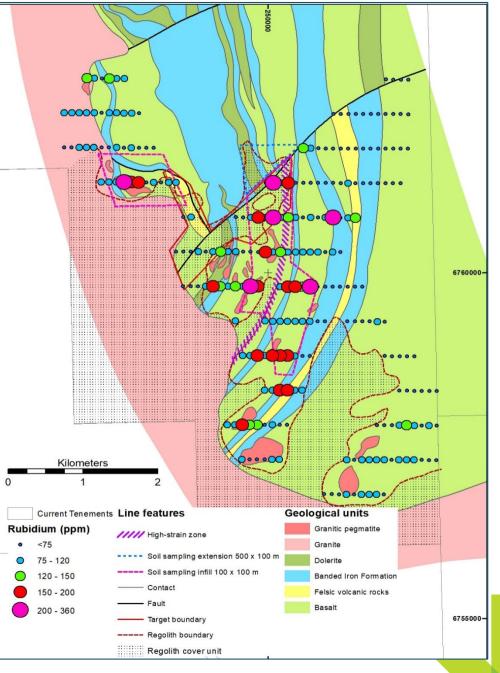
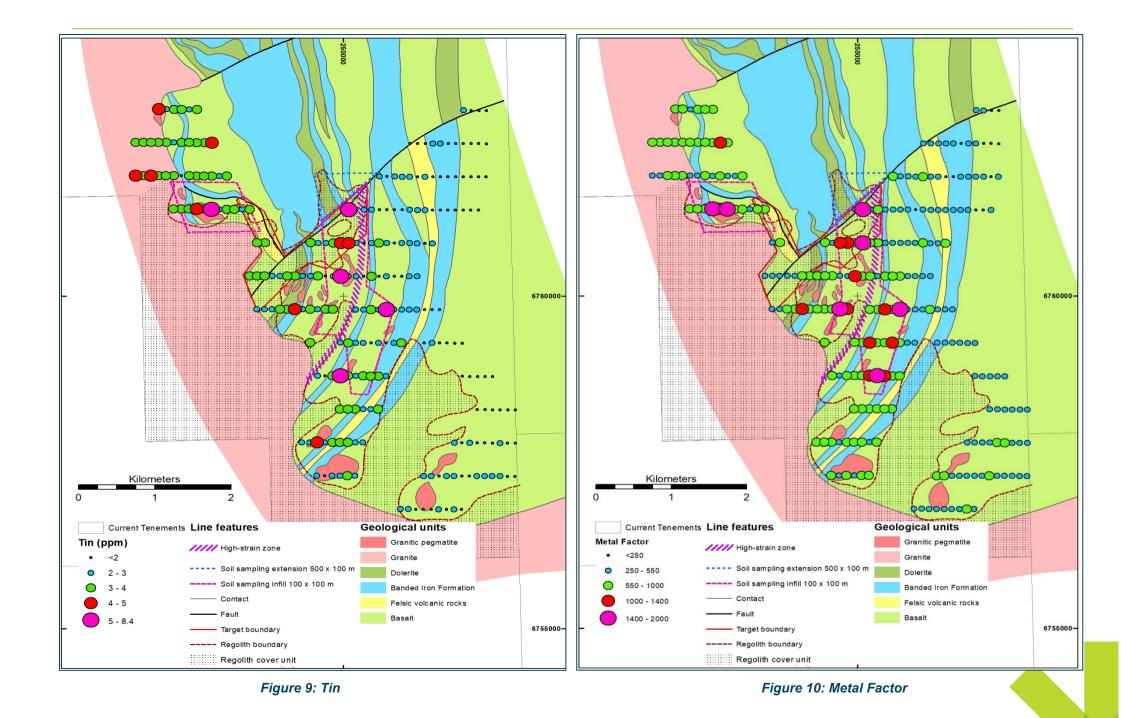
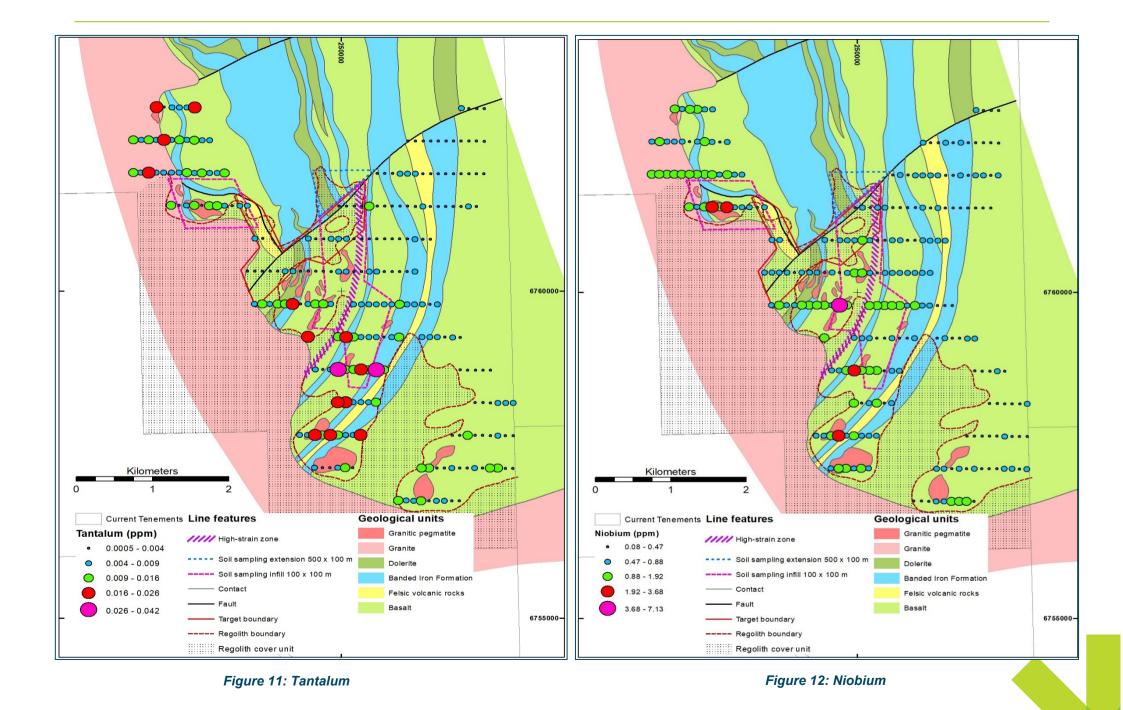




Figure 7: Caesium

Figure 8: Rubidium

Page | 20

Page | 21

APPENDIX 5 – Soil Sample Results

	GDA94 / M	GA zone 51							
Sample_ID	Northing	Easting	Li ppm	Be ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm	Nb ppm
JMIS_0001	6762813	247579	55	3.34	11.4	138	4.32	0.022	1.72
JMIS_0002	6762813	247679	45.1	2.59	7.37	79.1	2.09	0.004	0.62
JMIS_0003	6762812	247779	27.3	2.47	5.37	63.1	3.6	0.008	1.19
JMIS_0004	6762812	247879	52	2.59	7.32	121	3.09	0.009	1.21
JMIS_0005	6762812	247979	41.7	2.82	4.97	77.9	2.65	0.007	0.6
JMIS_0006	6762811	248079	57.4	4.08	5.14	75.9	3.88	0.026	0.87
JMIS_0007	6762796	251579	33	1.8	4.49	49.9	2.2	0.006	0.61
JMIS_0008	6762795	251679	44.5	0.93	2.56	42	1.39	0.004	0.38
JMIS_0009	6762795	251779	10.9	0.57	1.7	25.2	1.35	0	0.22
JMIS_0010	6762794	251879	15.7	0.78	2.62	37.4	1.26	0.003	0.25
JMIS_0011	6762315	247276	47.9	2.28	7.29	95.7	3.63	0.015	0.87
JMIS_0012	6762314	247376	62.3	3.15	7.05	101	3.41	0.009	1.37
JMIS_0013	6762314	247476	48.8	4.15	5.98	81.3	3.09	0.01	0.85
JMIS_0014	6762313	247576	56.6	4.5	6.15	79.2	3.11	0.008	0.83
JMIS_0015	6762313	247676	49.2	4.37	6.06	76.2	3.2	0.019	0.57
JMIS_0016	6762312	247776	36.9	3.83	4.69	65.2	2.97	0.006	0.34
JMIS_0017	6762312	247876	56.7	4.3	5.86	88.1	3.47	0.01	0.84
JMIS_0018	6762312	247976	58.1	4.16	5.65	81.6	3.04	0.008	1.03
JMIS_0019	6762311	248076	60.6	6.35	7.01	85.5	3.25	0.014	0.73
JMIS_0020	6762311	248176	84.8	7.08	8.3	98.6	3.81	0.007	0.43
JMIS_0021	6762310	248276	42.6	4.19	5.51	58.8	4.26	0.008	0.76
JMIS_0022	6762299	250876	28.9	1.11	2.49	37.2	1.68	0.003	0.5
JMIS_0023	6762298	250976	37.1	1.08	3.8	39.2	1.71	0.001	0.45
JMIS_0024	6762298	251076	24	1.14	4.19	47.8	1.75	0.002	0.41
JMIS_0025	6762298	251176	41.2	1.31	3.27	44.2	2.1	0.001	0.63
JMIS_0026	6762297	251276	28.1	1.38	4.27	54.3	2.07	0.003	0.36
JMIS_0027	6762297	251376	8.82	0.56	3	36.6	1.8	0.001	0.52
JMIS_0028	6762296	251476	10.1	0.96	6.06	42.2	1.45	0	0.22
JMIS_0029	6762296	251576	12.8	1.02	3.74	42.2	1.97	0.002	0.22
JMIS_0030	6762295	251676	10.6	0.64	3.17	38.5	1.57	0	0.2
JMIS_0031	6762295	251776	13.4	0.74	1.95	25.6	1.05	0.002	0.27
JMIS_0032	6762294	251876	11.3	0.61	2.4	29.9	1.14	0.002	0.34
JMIS_0033	6761815	247274	31.8	1.76	5.55	68.4	4.03	0.012	1.14
JMIS_0034	6761814	247374	27.8	1.77	4.8	67.6	3.35	0.007	1.06
JMIS_0035	6761814	247474	40.9	2.39	5.94	86	4.14	0.018	1.69
JMIS_0036	6761813	247574	54.5	2.92	7.14	104	3.82	0.008	1.53
JMIS_0037	6761813	247674	60	3.72	5.2	85	3.02	0.009	1.07
JMIS_0038	6761812	247774	23.8	1.93	4.54	53.2	3.07	0.006	1.01
JMIS_0039	6761812	247874	24.7	1.35	3.22	51.7	1.79	0.008	1.26
JMIS_0040	6761812	247974	64.2	3.64	6.22	85.9	3.09	0.016	1.59
JMIS_0041	6761811	248074	31.4	2.15	5.23	59.9	3.35	0.006	1.05
JMIS_0042	6761811	248174	44.9	3.28	5.16	75.1	3.25	0.012	0.84
JMIS_0043	6761810	248274	32	1.9	5.71	64	3.53	0.006	1.1
JMIS_0044	6761810	248374	37.7	2.75	3.92	64.5	2.44	0.009	0.74

	GDA94 / M	GA zone 51							
Sample_ID	Northing	Easting	Li ppm	Be ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm	Nb ppm
JMIS_0045	6761809	248474	46.4	3.52	4.5	69.8	3.04	0.011	0.83
JMIS_0046	6761801	250474	41.5	3.94	14.9	145	2.35	0.004	0.42
JMIS_0047	6761800	250574	26	1.93	7.78	80.6	1.87	0.003	0.54
JMIS_0048	6761800	250674	15.2	1.32	3.71	34.1	2.24	0.003	0.36
JMIS_0049	6761799	250774	28.2	1.9	4.93	43.8	2.38	0.005	0.67
JMIS_0050	6761799	250874	52.2	2.51	4.32	64.5	2.41	0.006	0.87
JMIS_0051	6761798	250974	25.9	1.29	2.99	43.5	1.94	0.006	0.55
JMIS_0052	6761798	251074	34.1	1.64	4.16	56.3	2.02	0.004	0.57
JMIS_0053	6761798	251174	7.89	0.83	1.83	26.9	1	0	0.12
JMIS_0054	6761797	251274	6.3	0.81	2.53	36.1	1.31	0	0.21
JMIS_0055	6761797	251374	19.6	0.9	10.1	49.8	1.73	0.002	0.82
JMIS_0056	6761796	251474	15.4	0.95	5.27	50	0.83	0.002	0.13
JMIS_0057	6761796	251574	23.4	1.24	4.69	72.2	1.52	0.002	0.58
JMIS_0058	6761795	251674	21.9	1.12	2.81	48.4	1.71	0.003	0.48
JMIS_0059	6761795	251774	13	0.9	2.38	25.4	1.45	0.003	0.2
JMIS_0060	6761794	251874	17.7	1.12	3.47	40.6	1.56	0.002	0.48
JMIS_0061	6761312	247772	35.4	2.59	8.6	97.1	3.43	0.012	1.26
JMIS_0062	6761312	247872	39.8	1.9	5.81	95.6	3.56	0.002	0.61
JMIS_0063	6761312	247972	49	3.62	6.37	96.7	3.24	0.009	0.95
	6761311	248072	79.1	8.24	16.5	216	4.47	0.015	3.04
	6761311	248172	57	7.77	15.3	194	3.22	0.003	0.99
	6761310	248272	54.2	9.61	11.3	184	6.26	0.014	3.68
	6761310	248372	56.8	3.24	5.16	74.2	2.62	0.01	0.62
JMIS_0068	6761309	248472	36.7	2.23	6.55	82.8	3.27	0.008	0.81
JMIS_0069	6761309	248572	28.5	1.57	6.65	69.8	3.01	0.004	0.6
JMIS_0070	6761308	248672	43.3	2.25	6.1	76.1	2.7	0.007	0.44
JMIS_0071	6761308	248772	39.2	2.91	6.31	101	3.05	0.005	0.65
JMIS_0072	6761303	249972	50.1	1.17	9.76	62.4	1.4	0.002	0.34
JMIS_0073	6761302	250072	78.7	7.11	23.2	221	5.5	0.002	0.63
JMIS_0074	6761302	250172	24.4	1.76	8.97	103	1.9	0.002	0.18
JMIS 0075	6761301	250272	42.5	2.02	14.6	100	2.26	0.002	0.48
JMIS_0076	6761301	250372	18.4	1.12	5.66	62.4	2.62	0.002	0.55
JMIS_0077	6761301	250472	24.6	0.94	3.47	34.7	1.33	0.002	0.00
JMIS_0078	6761300	250572	21.5	1.08	4.52	68.9	1.58	0.002	0.18
JMIS_0079	6761300	250672	14.1	1.15	4.07	41	1.56	0.002	0.18
JMIS_0080	6761299	250772	14.1	0.77	3.55	41	1.73	0.002	0.25
JMIS_0080	6761299	250872	20.4	1.13	4.85	54.6	2.35	0.003	0.54
JMIS_0081	6761299	250872	30.5	1.13	4.85	62.3	2.33	0.002	0.34
JMIS_0083	6761298	251072 251172	26.6	1.78	6.48	90.5 71.2	2.21	0.005	0.62
JMIS_0084	6761298		26.2	1.57	5.7	71.2	1.81	0.003	0.41
JMIS_0085	6761297	251272	15.5	0.99	3.46 6.15	42.8	1.31	0.002	0.27
JMIS_0086	6761297	251372	16.5	0.79	6.15	51.5	1.68	0	0.29
JMIS_0087	6761296	251472	16.3	1.38	3.79	24.8	1.67	0.002	0.39
JMIS_0088	6761296	251572	8.6	0.38	1.12	15.6	0.61	0.001	0.08
JMIS_0089	6761295	251672	12.6	0.73	3.05	43.4	1.29	0.005	0.16
JMIS_0090	6761295	251772	25.3	1.05	2.76	34.3	1.4	0.002	0.33
JMIS_0091	6760808	248870	27.8	1.49	6.16	62.1	3.05	0.007	0.66

	GDA94 / M	GA zone 51							
Sample_ID	Northing	Easting	Li ppm	Be ppm	Cs ppm	Rb ppm	Sn ppm	Та ррт	Nb ppm
JMIS_0092	6760807	248970	34.2	2.08	5.74	96.8	3.15	0.004	0.55
JMIS_0093	6760805	249570	39.1	1.74	6.73	70	3.7	0.007	0.67
JMIS_0094	6760804	249670	21.1	1.4	6.21	64.3	2.39	0.002	0.33
JMIS_0095	6760804	249770	63.4	8.02	6.38	80.5	2.56	0.003	0.55
JMIS_0096	6760803	249870	82.1	4.87	23.6	194	3.98	0.005	0.59
JMIS_0097	6760803	249970	73.7	4.5	9.55	92	4.18	0.007	0.66
JMIS_0098	6760802	250070	107	5.37	25.6	261	4.16	0.006	0.96
JMIS_0099	6760802	250170	35.2	1.47	10.9	96.6	2.64	0.002	0.61
JMIS_0100	6760801	250270	50	1.37	17.5	123	1.85	0.003	0.46
JMIS_0101	6760801	250370	23.6	1.18	9.85	86.6	2.68	0.002	0.46
JMIS_0102	6760801	250470	36.3	1.11	7.07	60	3.6	0.002	0.53
JMIS_0103	6760800	250570	25.4	1.36	7.58	84.5	2.31	0.002	0.55
JMIS_0104	6760800	250670	10.4	1.08	5.01	64.7	1.78	0.002	0.2
JMIS_0105	6760799	250770	23.2	1.29	7.22	91.7	2.54	0.002	0.4
JMIS_0106	6760799	250870	40.7	1.53	26.5	201	2.35	0.002	0.62
JMIS_0107	6760798	250970	38.1	1.66	5.08	57.8	2.96	0.008	0.49
JMIS_0108	6760798	251070	13.9	0.73	6.86	99.6	1.59	0	0.71
JMIS_0109	6760798	251170	43.3	1.65	16.4	128	2.41	0.003	0.72
JMIS_0110	6760308	248768	24.5	1.2	5.82	58	3.38	0.004	0.78
JMIS_0111	6760308	248868	29	1.36	5.63	60.5	3.22	0.002	0.62
JMIS_0112	6760307	248968	27.4	1.31	5.22	57	3.1	0.004	0.72
JMIS_0113	6760307	249068	36.1	1.88	6.22	80.3	2.73	0.002	0.62
JMIS_0114	6760306	249168	24.4	1.59	5.21	53.5	2.49	0.002	0.36
JMIS_0115	6760306	249268	45.6	2.23	8.94	110	3.17	0.005	0.53
JMIS_0116	6760305	249368	61.4	2.41	10.1	128	3.48	0.006	0.65
JMIS_0117	6760305	249468	48	1.7	8.7	110	2.85	0.002	0.53
JMIS_0118	6760305	249568	56.7	1.51	6.53	86.5	2.58	0.001	0.43
JMIS_0119	6760304	249668	61.3	2.22	4.41	70.4	3.01	0.004	0.75
JMIS_0120	6760304	249768	26.8	1.08	3.1	62.9	1.87	0	0.43
JMIS_0121	6760303	249868	33	2.03	5.01	55.7	2.03	0.004	0.66
JMIS_0122	6760303	249968	57.6	7.66	17	184	7.11	0.007	1.08
JMIS_0123	6760302	250068	49.1	1.88	14.4	117	2.41	0.006	0.98
JMIS_0124	6760302	250168	33.8	1.8	12.2	127	2.1	0.004	0.8
JMIS_0125	6760302	250268	20.3	1.23	7.84	82.1	1.92	0.002	0.39
JMIS_0126	6760301	250368	38.2	2.56	7.89	80.4	3.03	0.009	0.78
JMIS_0127	6760301	250468	44.6	1.88	8.5	97.4	1.98	0.007	0.51
JMIS_0128	6760300	250568	38.1	2.55	8.31	110	2.45	0.002	0.55
JMIS_0129	6760300	250668	30	1.81	8.1	118	1.93	0.002	0.57
JMIS_0130	6760299	250768	26.8	1.54	5.51	69.1	1.88	0.004	0.55
JMIS_0131	6760299	250868	18.1	1.45	10.5	81.1	2.51	0.004	0.63
JMIS_0132	6760298	250968	42.3	1.98	4.3	50.1	2.32	0.008	0.68
JMIS_0133	6759808	248865	43.2	2.07	5.4	61.8	2.76	0.007	0.56
JMIS_0134	6759807	248965	20.2	2.02	5.2	61.4	2.74	0.011	0.92
JMIS_0135	6759807	249065	42	2.83	6.11	60.4	2.73	0.008	0.56
JMIS_0136	6759806	249165	41	3.44	9.22	85.1	3.33	0.012	0.88
JMIS_0137	6759806	249265	77.2	4.11	13.1	151	3.65	0.011	1.13
JMIS_0138	6759805	249365	64.8	3.81	10.1	130	4.23	0.019	1.17

	GDA94 / M	GA zone 51							
Sample_ID	Northing	Easting	Li ppm	Be ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm	Nb ppm
JMIS_0139	6759805	249465	60	2.78	6.08	83.4	2.85	0.004	1.12
JMIS_0140	6759805	249565	78.6	3.59	9.45	123	3.65	0.008	1.65
JMIS_0141	6759804	249665	70.7	3.02	9.41	99.7	2.98	0.011	0.59
JMIS_0142	6759804	249765	106	3.24	36	360	3.77	0.01	7.13
JMIS_0143	6759803	249865	89.4	5.74	15	172	3.06	0.009	1.18
JMIS_0144	6759802	250165	46.2	2.58	7.76	83.6	2.76	0.009	1
JMIS_0145	6759802	250265	42.6	2.71	20.8	179	2.78	0.007	1.06
JMIS_0146	6759801	250365	71.6	5.04	13.7	156	3.45	0.006	1.5
JMIS_0147	6759801	250465	68.4	3.7	9.68	144	2.64	0.005	0.91
JMIS_0148	6759800	250565	74	8.5	35.5	317	8.4	0.005	1.13
JMIS_0149	6759800	250665	24	2.44	4.31	64	2.43	0.008	0.72
JMIS_0150	6759799	250765	23.9	2.13	4.74	51.6	2.99	0.016	1.02
JMIS_0151	6759799	250865	22	1.99	4.35	46.3	2.61	0.006	0.77
JMIS_0152	6759798	250965	48.5	2.83	5.89	69.4	2.66	0.006	0.61
JMIS_0153	6759798	251065	15.9	1.01	3.33	39.9	1.37	0.005	0.23
JMIS_0154	6759798	251165	20.6	1.05	3.66	35.4	1.47	0.002	0.27
JMIS_0155	6759797	251265	19.6	1.05	3.2	41	1.51	0.007	0.25
JMIS_0156	6759305	249563	53.5	3.87	8.51	119	3.69	0.026	1.21
JMIS_0157	6759303	249963	50	3.35	7.52	98	2.43	0.014	0.51
JMIS_0158	6759302	250063	72.4	4.32	9.41	119	3.16	0.023	0.53
JMIS_0159	6759302	250163	111	4.6	7.99	116	2.54	0.01	0.71
JMIS_0160	6759302	250263	75.6	4.15	6.56	83.9	2.09	0.006	0.43
JMIS_0161	6759301	250363	67.6	4.11	8.26	82.9	1.95	0.007	0.33
JMIS_0162	6759301	250463	83.4	5.91	10.6	91.8	2.19	0.005	0.55
JMIS_0163	6759300	250563	60.4	4.59	12.8	114	1.97	0.003	0.46
JMIS_0164	6759300	250663	17.5	2.81	5.05	60.7	2.95	0.009	0.31
JMIS_0165	6759299	250763	29.4	2.27	4.98	61.6	3.06	0.014	0.55
JMIS_0166	6759298	251063	23	1.65	4.18	65.8	1.98	0.006	0.32
JMIS_0167	6759298	251163	26.6	1.56	3.67	58	2.17	0.006	0.51
JMIS_0168	6759297	251263	20.5	1.34	2.86	47.2	1.64	0.005	0.39
JMIS_0169	6759297	251363	23.6	1.41	3.68	47.1	1.72	0.004	0.38
JMIS_0170	6759296	251463	27.7	1.38	8.81	76	1.7	0.005	0.48
JMIS_0171	6759296	251563	29.7	1.53	6.65	58.8	1.63	0.004	0.53
JMIS_0172	6758804	249661	47.2	2.66	8.73	108	2.93	0.008	0.68
JMIS_0173	6758804	249761	18.2	1.38	7.39	100	1.49	0.003	0.81
JMIS_0174	6758803	249861	15	1.4	16.8	158	3.09	0.006	0.92
JMIS_0175	6758803	249961	44.9	4.51	7.44	106	6.51	0.042	2.37
JMIS_0176	6758802	250061	55.9	3.05	13	165	3.32	0.011	1.17
JMIS_0177	6758802	250161	77.7	5.17	14.6	169	2.43	0.011	1.22
JMIS_0178	6758802	250261	112	7.35	12.5	193	3.74	0.017	1.62
JMIS_0179	6758801	250361	83	6.82	7.85	114	3.7	0.013	0.42
JMIS_0180	6758801	250461	42.2	4.41	4.23	61.8	3.73	0.035	0.61
JMIS_0181	6758800	250561	44.9	3.13	5.4	70.3	2.99	0.014	0.7
JMIS_0182	6758796	251561	25.6	1.25	3.58	43.1	1.88	0.003	0.18
JMIS_0183	6758795	251661	27.6	1.35	2.41	35.3	1.86	0.004	0.17
 JMIS_0184	6758795	251761	27	1.26	2.82	38.9	1.74	0.003	0.3
JMIS_0185	6758795	251861	30.1	1.33	2.74	40.4	1.74	0.002	0.5

	GDA94 / M	GA zone 51							
Sample_ID	Northing	Easting	Li ppm	Be ppm	Cs ppm	Rb ppm	Sn ppm	Ta ppm	Nb ppm
JMIS_0186	6758794	251961	26.9	1.44	4.27	51	1.57	0.004	0.26
JMIS_0187	6758303	249959	43.5	2.51	8.44	110	3.49	0.022	0.97
JMIS_0188	6758302	250059	59.8	3.62	5.88	98.5	3.17	0.026	0.4
JMIS_0189	6758302	250159	60	3.31	12.1	165	3.26	0.005	0.5
JMIS_0190	6758302	250259	45.2	2.68	11.6	162	2.71	0.005	1
JMIS_0191	6758301	250359	36.6	2.5	6.31	75.1	3	0.006	0.34
JMIS_0192	6758301	250459	49	3.07	6.29	88.9	3.27	0.012	0.53
JMIS_0193	6758295	251759	31.5	1.36	1.59	24.4	1.67	0.002	0.24
JMIS_0194	6758295	251859	18.7	1.29	1.95	23.9	1.43	0.002	0.2
JMIS_0195	6758294	251959	27.2	1.46	2.82	35.1	1.57	0.002	0.14
JMIS_0196	6758294	252059	50.2	1.92	3.87	50.1	1.89	0.006	0.27
JMIS_0197	6758293	252159	38	1.55	5.47	50.5	1.88	0.006	0.33
JMIS_0198	6758293	252259	33.8	1.39	6.85	53.8	1.94	0.005	0.57
JMIS_0199	6757805	249457	48.1	2.68	6.79	108	2.57	0.009	0.66
JMIS_0200	6757805	249557	41.8	2.71	5.92	90.7	2.6	0.008	0.59
JMIS_0201	6757804	249657	26.7	2.51	14.3	168	4.09	0.02	1.21
JMIS_0202	6757804	249757	8.39	1.23	12.4	126	2.99	0.012	2.99
JMIS_0203	6757803	249857	72.7	3.46	12.9	149	3.62	0.017	0.83
JMIS_0204	6757803	249957	48.8	4.54	6.66	73.7	3.57	0.01	1.92
JMIS_0205	6757802	250057	42.2	2.73	9.95	95.1	3.13	0.006	0.56
JMIS_0206	6757802	250157	37.5	2.71	4.47	72.8	2.38	0.007	0.67
JMIS_0207	6757802	250257	47.6	2.97	3.95	59.6	2.69	0.017	0.53
JMIS_0208	6757796	251457	44.2	1.88	4.74	62.3	2.06	0.004	0.44
JMIS_0209	6757796	251557	25.7	1.27	3.81	43.5	1.76	0.003	0.25
JMIS_0210	6757795	251657	44.6	1.87	4.9	58.3	2.34	0.012	0.24
JMIS_0211	6757795	251757	28.5	1.38	6.25	85.3	1.75	0.002	0.43
JMIS_0212	6757795	251857	41.6	1.55	13.3	128	1.99	0.002	0.32
JMIS_0213	6757794	251957	41.5	1.93	9.56	98.3	2	0.004	0.6
JMIS_0214	6757794	252057	43	1.87	4.79	64.9	2.18	0.007	0.39
JMIS_0215	6757793	252157	28.9	1.96	9.64	90.1	1.96	0.002	0.35
JMIS_0216	6757793	252257	24.4	1.31	5.89	51.6	1.78	0.004	0.2
JMIS_0217	6757304	249654	35.5	2.26	6.52	117	2.46	0.007	0.57
JMIS_0218	6757304	249754	28	1.68	2.71	56.3	1.95	0.004	0.93
JMIS_0219	6757303	249854	81.3	2.71	2.44	39.5	2.11	0.004	0.94
JMIS_0220	6757303	249954	43	2.54	2.62	50.2	2.37	0.007	0.54
JMIS_0221	6757302	250054	57.4	3.36	6.2	103	3.48	0.014	1.48
JMIS_0222	6757302	250154	35.8	2.28	6.87	102	2.62	0.002	0.88
JMIS_0223	6757298	251054	50.3	2.26	5.44	77.1	2.74	0.012	0.64
JMIS_0224	6757298	251154	44.1	2.31	5.53	70.8	2.59	0.013	0.88
JMIS_0225	6757297	251254	31.2	1.77	5.38	77.5	1.78	0.004	0.34
JMIS_0226	6757297	251354	30.6	1.7	6.46	92.7	2.09	0.003	0.53
JMIS_0227	6757296	251454	33.3	1.56	5.4	81.4	2.01	0.008	0.42
JMIS_0228	6757296	251554	23.6	1.38	5.84	77.1	1.63	0.002	0.61
 JMIS_0229	6757295	251654	22.6	1.22	4.44	47.7	1.66	0.002	0.34
 JMIS_0230	6757295	251754	34.9	1.7	8.23	114	2.49	0.008	0.47
 JMIS_0231	6757295	251854	43.5	1.59	6.24	90.9	2.26	0.002	0.36
 JMIS_0232	6757294	251954	42.5	1.87	5.56	75.2	2.25	0.01	0.51

Sample_ID	GDA94 / M(GA zone 51	Linnm	ppm Be ppm Cs	Conn	Rb ppm	Sn ppm	To nom	Nb ppm
Sample_ID	Northing	Easting	стррш		Cs ppm			Ta ppm	
JMIS_0233	6757294	252054	34.4	1.68	7.55	74.3	2.21	0.011	0.49
JMIS_0234	6757293	252154	19.7	1.1	4	46.4	1.73	0.002	0.19
JMIS_0235	6757293	252254	32.5	1.45	7.19	69.2	1.95	0.004	0.65
JMIS_0236	6756799	250752	30.2	1.72	4.75	61.5	2.34	0.01	0.3
JMIS_0237	6756799	250852	32.7	1.69	4.81	62.7	2.17	0.008	0.24
JMIS_0238	6756798	250952	16.8	1.26	3.61	45	1.7	0.005	0.29
JMIS_0239	6756798	251052	56.1	1.4	4.97	78.7	1.93	0.014	0.67
JMIS_0240	6756798	251152	56.7	1.53	4.57	73.5	1.74	0.004	0.85
JMIS_0241	6756797	251252	47.7	2	4.71	75.6	2.14	0.005	1.12
JMIS_0242	6756797	251352	46.5	1.62	4.42	77.5	1.92	0.005	0.95
JMIS_0243	6756796	251452	62.7	1.87	4.67	76.7	2.2	0.004	0.94
JMIS_0244	6756796	251552	54	1.59	5.09	65.3	1.84	0.003	0.46

APPENDIX 6 – Competent Persons

Dr Mike Grigson – Arc Minerals

The information in this report that relates to exploration results is based on and fairly represents information generated by Dr Mike Grigson, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy. Dr Grigson is a full-time employee of Arc Minerals consultants, and provides ad hoc geological consultancy services to Juno Minerals Limited. Dr Grigson has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code"). Dr Grigson consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Andrew Bewsher – BM Geological Services Pty Ltd

The information in this report that relates to exploration results is based on and fairly represents information reviewed by Andrew Bewsher, a Competent Person who is a Member of the Australasian Institute of Geoscientists. Andrew Bewsher is a full-time employee of BM Geological Services Pty Ltd who provide geological consultancy services to Juno Minerals Limited. Andrew Bewsher has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code"). Andrew Bewsher consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

All parties have consented to the inclusion of their work for the purposes of this announcement. The interpretations and conclusions reached in this announcement are based on current geological theory and the best evidence available to the author at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however might be, they make no claim for absolute certainty. Any economic decisions which might be taken on the basis of the interpretations or conclusions contained in this presentation will therefore carry an element of risk.

APPENDIX 7 – JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 Ultra-fine Fraction (UFF) Geochemical Soil Sampling: A total of 250 samples (including duplicates) were collected by Juno Minerals over the Mount Ida Project during March and April 2023. The Mount Ida Ultra-fine soil sampling program was designed as a first pass geochemical test for mining tenement M29/414 primarily testing for enrichment in LCT pegmatite pathfinder elements. The UFF soils geochemical samples were collected at a nominal 500 X 100m grid designed to cover prospective target areas defined during earlier surface mapping programs. The UItrafine soil samples from the Mount Ida project were analysed using a CSIRO developed program that utilises the latest advanced technologies for geochemical mapping and targeting. Ultrafine is designed to analyse the clay-sized fraction (<2µm) for gold exploration and multielement analysis for major and trace elements. Exploration Drilling: The subsurface extension of the pegmatites was tested by means of RC drilling, Goldfields Drilling completed a 14 hole, 1 486m RC drilling program during June 2023. RC drilling derived pegmatite samples in this announcement are 1m intervals, samples were analysed by Nagrom in Perth using Peroxide Fusion Digest with ICP finish.
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Soil samples were collected in the field by removing any surface vegetation, lag and topsoil and then digging down to a nominal depth of approximately 20cm. The collected sample was sieved to -2mm and placed in a pre-numbered paper sample bag. Approximately 500g of sample material was collected at each sample point Juno Minerals submitted all UFF soil samples to LabWest – Perth for analysis utilising the CSIRO backed Ultrafine analysis method. All sampling was conducted using QAQC sampling protocols which are in accordance with industry best practice, including certified reference material standards, blanks and

Criteria	JORC Code explanation	Commentary
		 duplicates. RC holes were sampled every meter with samples split on the rig using a cyclone splitter. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system. All soils and rockchip samples were prepared and assayed by an independent commercial laboratory whose instrumentation are regularly calibrated.
	• Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	 Soils Sampling: Ultrafine+ is designed to analyse the clay-sized fraction (<2µm) for gold exploration, and multielement analysis for major and trace elements using LabWest's Ultrafine microwave digest with an ICPEOS/MS finish. RC Drilling: Peroxide Fusion Digest with ICP finish. The prepared sample is fused with sodium peroxide and digested in dilute hydrochloric acid. The resultant solution is analysed by ICP Mass Spectrometry. This method offers total dissolution of the sample and is useful for mineral matrices that may resist acid digestions. Samples are fused and digested in Alumina crucibles, as a result, Al is not able to be analysed using this method.
Drilling techniques	 Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 The RC drilling was completed using a Schram 685 truck mounted drill rig. Hole diameter was 125mm.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	Recoveries for all of the holes were logged as good with no indication of sample loss.All of the RC and soils samples were dry.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Sampling equipment was cleaned in between each sample for the soils samples. Rods were flushed with air after every 6m drill rod was drilled to prevent contamination between samples. Loss of fines as dust was mitigated by means of injecting water into the sample pipe before it reached the cyclone. By doing this, reduces the possibility of positive bias as both the lighter Li bearing material and the heavy tantalum bearing material is retained.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• No material bias has been identified during the soils sampling and the RC drilling.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	 RC chips were geologically logged using predefined lithological, mineralogical, and physical characteristic (colour, weathering etc.) logging codes and captured into electronic spreadsheets. Rock chips where sieved, washed using clean, potable water and stored according to meter interval in marked 20 compartment plastic rock chip trays. RC logging was completed on one metre intervals at the rig by a qualified geologist.

Criteria	JORC Code explanation	Commentary
		All holes are logged in full
	• Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	• RD drilling: Logging was predominately qualitative in nature, although pertinent lithology percents (e.g. pegmatite) was estimated visually with high accuracy.
	The total length and percentage of the relevant intersections logged.	All the drillholes were logged in full
Sub-sampling techniques and sample preparation	• If core, whether cut or sawn and whether quarter, half or all core taken.	N/A, no core was recovered
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	All samples were dry during collection.RC samples were split at the rig using a rig mounted cyclone splitter.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	 Soils samples: All samples were dry sieved (-2mm) and approximately 500 grams of minus 2mm material sampled in the field and bagged. No further subsampling is conducted. A 200g sample is considered appropriate for UFF soil sampling. Soil samples were placed directly into pre-numbered paper bags at the location from which they were collected.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 Soils sampling: Standards (prepared on site) were submitted every 50 samples; duplicates were taken every 50 samples. RC Drilling: utilized a QAQC regime consisting of certified reference material checks and blanks. Checks where added at least every 30 samples on RC samples submitted to the lab. Sample sizes are considered to be appropriate to correctly represent the geological model and the style of mineralisation.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Soil Sampling criteria included: the sample was a fair representation of the area sampled. the sample being in-situ and not to be transported material Sample mass was at least 500g per sample. Field duplicates were taken every 50 samples within 1m of the original sample. RC Drilling criteria: Use of a rig mounted cyclone splitter is considered appropriate to generate accurate representative splits of the sampled material.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	 Required samples mass for the Ultrafine method is 200g, enough sample material was provided to ensure multiple repeat assays of each sample if needed. The Ultrafine method utilises the -2 micron clay fraction, all sample material above 2mm was screened off to ensure ample -2 micron material in the sample.

Criteria	JORC Code explanation	Commentary
		 RC Drilling: sample sizes are considered to be appropriate to correctly represent the geological model and the style of mineralization. Samples masses collected off the RC drill rig were between 2 and 3 kg per samples.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 All UFF soil samples was submitted to LabWest – Perth for analysis and sample preparation including separation and collection of <2µm fraction. Gold and multi-element analysis was done utilising LabWest's Ultrafine+ microwave digest with an ICPEOS/MS finish. RC Drilling samples were sent to Nagrom – Perth, and analysed using Peroxide Fusion Digest with ICP finish to analyse for 10 elements. The prepared sample is fused with sodium peroxide and digested in dilute hydrochloric acid. The resultant solution is analysed by ICP. This method offers total dissolution of the sample and is useful for mineral matrices that may resist acid digestions. Samples are fused and digested in Alumina crucibles, as a result, Al is not able to be analysed using this method.
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools or other non-assay instrument types were used in the analyses reported.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established	 Soils sampling: Standards (prepared on site) were submitted every 50 samples; duplicates were inserted every 50 samples. RC Drilling: CRMS and blanks were added at least every 30 samples Analyses were undertaken at recognized industry specific laboratory. It is therefore expected that the reported assay results achieved acceptable levels of accuracy and precision for the relevant analytical method employed.
Verification of sampling and assaying	• The verification of significant intersections by either independent or alternative company personnel.	• Not relevant due to samples being surface samples and no intersections of significant Li mineralisation during RC drilling
	• The use of twinned holes.	• This was a first round pass on the tenement testing for Li mineralisation, as such there are no historical holes to be twinned.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Results are uploaded into the company database, checked and verified. All data is stored in a Company database system and maintained by the Database Manager
	Discuss any adjustment to assay data	 There were no adjustments to assay data. For the RC drilling, the Li₂O concentration was reported directly by Nagrom.

Criteria	J	ORC Code explanation	Co	ommentary
Location of data points	•	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	•	The soils sample and RC drill collar locations were located using handheld GPS systems, due to the relative lack of thick tree cover the accuracy can be expected to be within +/- 3m on the easting and northing and +/- 5m on the elevation. This is considered adequate for the type and purpose of sampling program. No downhole surveys were completed on the RC drillholes.
	•	Specification of the grid system used.	•	The grid system used is GDA94, MGA Zone 51.
	•	Quality and adequacy of topographic control.	•	Z values quoted in this report are from the handheld GPS. Historical LIDAR surveys will enable very accurate topographic correlation
Data spacing and distribution	•	Data spacing for reporting of Exploration Results.	•	Data spacing and distribution at this stage is not considered satisfactory for estimation of economic parameters.
	•	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	•	N/A
	•	Whether sample compositing has been applied.	•	No compositing has been applied to the exploration results
Orientation of data in relation to geological structure	•	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	•	The orientation of the sample lines and RC drillhole azimuths is perpendicular to the strike of regional structures and geological contacts. The orientation of sampling is considered appropriate with respect to the structure and targets being tested.
	•	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	•	No orientation-based sampling bias has been identified.
Sample security	•	The measures taken to ensure sample security.	•	Chain of custody has been managed by the company and the relevant consulting geologist until samples passed to the registered freight company transporting the samples to the LabWest laboratory and the Nagrom laboratory. When in transit the samples were placed in sealed boxes and wrapped in plastic shrink wrap that would indicate tampering. The laboratory was sent a sample submission sheet detailing the sample numbers and analyses and a full list of analytes. The sample submission sheet was cross referenced with the samples on arrival at the laboratory. No sample preparation or analyses was to commence if there were any discrepancies
Audits or reviews	•	The results of any audits or reviews of sampling techniques and data.	•	Sampling and assaying techniques are industry standard. No external audit has been completed.

APPENDIX 8 – Tenement Schedule

Location	Tenement	Project	Beneficial Interest
Western Australia	G29/21	Mount Mason	100%
Western Australia	G29/22	Mount Ida	100%
Western Australia	G29/23	Mount Mason	100%
Western Australia	L29/100	Mount Mason	100%
Western Australia	L29/106	Mount Mason	100%
Western Australia	L29/116	Mount Mason	100%
Western Australia	L29/117	Mount Mason	100%
Western Australia	L29/118	Mount Mason	100%
Western Australia	L29/119	Mount Mason	100%
Western Australia	L29/120	Mount Mason	100%
Western Australia	L29/121	Mount Mason	100%
Western Australia	L29/122	Mount Ida	100%
Western Australia	L29/123	Mount Mason	100%
Western Australia	L29/131	Mount Mason	100%
Western Australia	L29/132	Mount Mason	100%
Western Australia	L29/78	Mount Ida	100%
Western Australia	L29/79	Mount Ida	100%
Western Australia	L29/81	Mount Ida	100%
Western Australia	L29/99	Mount Ida	100%
Western Australia	L36/214	Mount Ida	100%
Western Australia	L36/215	Mount Ida	100%
Western Australia	L36/216	Mount Ida	100%
Western Australia	L36/217	Mount Ida	100%
Western Australia	L37/203	Mount Ida	100%
Western Australia	L57/45	Mount Ida	100%
Western Australia	L57/46	Mount Ida	100%
Western Australia	M29/408	Mount Mason	100%
Western Australia	M29/414	Mount Ida	100%

Appendix 5B

Mining exploration entity or oil and gas exploration entity quarterly cash flow report

Name of entity

JUNO MINERALS LIMITED

ABN

94 645 778 892

Quarter ended ("current quarter")

30 JUNE 2023

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date \$A'000
1.	Cash flows from operating activities		
1.1	Receipts from customers	-	-
1.2	Payments for		
	(a) exploration & evaluation	-	-
	(b) development	-	-
	(c) production	-	-
	(d) staff costs	(95)	(319)
	(e) administration and corporate costs	(323)	(752)
1.3	Dividends received (see note 3)	-	-
1.4	Interest received	14	67
1.5	Interest and other costs of finance paid	-	-
1.6	Income taxes paid	-	-
1.7	Government grants and tax incentives	-	-
1.8	Other (provide details if material) - Lease of Cassini Village	99	383
1.9	Net cash from / (used in) operating activities	(305)	(622)

2.	Cash flows from investing activities	;	
2.1	Payments to acquire or for:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment ¹	(226)	(1,746)
	(d) exploration & evaluation	(207)	(449)
	(e) investments	-	-
	(f) other non-current assets	-	-
¹ Inclu	des capitalised expenditure for mine development, plant,	and equipment	•

Con	solidated statement of cash flows	Current quarter \$A'000	Year to date \$A'000
2.2	Proceeds from the disposal of:		
	(a) entities	-	-
	(b) tenements	-	-
	(c) property, plant and equipment	-	-
	(d) investments	-	-
	(e) other non-current assets	-	-
2.3	Cash flows from loans to other entities	-	-
2.4	Dividends received (see note 3)	-	-
2.5	Other (provide details if material)	-	-
2.6	Net cash from / (used in) investing activities	(433)	(2,194)

3.	Cash flows from financing activities		
3.1	Proceeds from issues of equity securities (excluding convertible debt securities)	-	
3.2	Proceeds from issue of convertible debt securities	-	
3.3	Proceeds from exercise of options	-	
3.4	Transaction costs related to issues of equity securities or convertible debt securities	-	
3.5	Proceeds from borrowings	-	
3.6	Repayment of borrowings	-	
3.7	Transaction costs related to loans and borrowings	-	
3.8	Dividends paid	-	
3.9	Other (provide details if material)	-	
3.10	Net cash from / (used in) financing activities	-	

4.	Net increase / (decrease) in cash and cash equivalents for the period		
4.1	Cash and cash equivalents at beginning of period	2,344	4,421
4.2	Net cash from / (used in) operating activities (item 1.9 above)	(305)	(62)
4.3	Net cash from / (used in) investing activities (item 2.6 above)	(433)	(2,194)
4.4	Net cash from / (used in) financing activities (item 3.10 above)	-	-

Appendix 5B Mining exploration entity or oil and gas exploration entity quarterly cash flow report

Consolidated statement of cash flows		Current quarter \$A'000	Year to date \$A'000
4.5	Effect of movement in exchange rates on cash held	-	-
4.6	Cash and cash equivalents at end of period	1,606	1,606

5.	Reconciliation of cash and cash equivalents at the end of the quarter (as shown in the consolidated statement of cash flows) to the related items in the accounts	Current quarter \$A'000	Previous quarter \$A'000
5.1	Bank balances	10	11
5.2	Call deposits	1,596	2,333
5.3	Bank overdrafts	-	-
5.4	Other (provide details)	-	-
5.5	Cash and cash equivalents at end of quarter (should equal item 4.6 above)	1,606	2,344

6.	Payments to related parties of the entity and their associates	Current quarter \$A'000
6.1	Aggregate amount of payments to related parties and their associates included in item 1	95
6.2	Aggregate amount of payments to related parties and their associates included in item 2	20
	f any amounts are shown in items 6.1 or 6.2, your quarterly activity report must include a c ation for, such payments.	lescription of, and an

7.	Financing facilities Note: the term "facility' includes all forms of financing arrangements available to the entity. Add notes as necessary for an understanding of the sources of finance available to the entity.	Total facility amount at quarter end \$A'000	Amount drawn at quarter end \$A'000
7.1	Loan facilities	ties -	
7.2	Credit standby arrangements	-	-
7.3	Other (please specify)	-	-
7.4	Total financing facilities	-	-
7.5	Unused financing facilities available at quarter end		-
7.6	Include in the box below a description of each facility above, including the lender, interest rate, maturity date and whether it is secured or unsecured. If any additional financing facilities have been entered into or are proposed to be entered into after quarter end, include a note providing details of those facilities as well.		

8.	Estim	ated cash available for future operating activities	\$A'000
8.1	Net ca	sh from / (used in) operating activities (item 1.9)	(305)
8.2		ents for exploration & evaluation classified as investing es) (item 2.1(d))	(207)
8.3	Total r	elevant outgoings (item 8.1 + item 8.2)	(513)
8.4	Cash and cash equivalents at quarter end (item 4.6)		1,606
8.5	Unused finance facilities available at quarter end (item 7.5)		-
8.6	Total a	available funding (item 8.4 + item 8.5)	1,606
8.7	7 Estimated quarters of funding available (item 8.6 divided by item 8.3)		3.1
	Note: if the entity has reported positive relevant outgoings (ie a net cash inflow) in item 8.3, answer item 8.7 as "N/A". Otherwise, a figure for the estimated quarters of funding available must be included in item 8.7.		
8.8	If item 8.7 is less than 2 quarters, please provide answers to the following questions:		
	8.8.1 Does the entity expect that it will continue to have the current level of net operating cash flows for the time being and, if not, why not?		
	Answer:		
	8.8.2 Has the entity taken any steps, or does it propose to take any steps, to raise further cash to fund its operations and, if so, what are those steps and how likely does it believe that they will be successful?		
	Answer:		

8.8.3 Does the entity expect to be able to continue its operations and to meet its business objectives and, if so, on what basis?

Answer:

Note: where item 8.7 is less than 2 quarters, all of questions 8.8.1, 8.8.2 and 8.8.3 above must be answered.

Compliance statement

- 1 This statement has been prepared in accordance with accounting standards and policies which comply with Listing Rule 19.11A.
- 2 This statement gives a true and fair view of the matters disclosed.

Date: 27 JULY 2023

BY THE BOARD

Authorised by: (Name of body or officer authorising release – see note 4)

Notes

- 1. This quarterly cash flow report and the accompanying activity report provide a basis for informing the market about the entity's activities for the past quarter, how they have been financed and the effect this has had on its cash position. An entity that wishes to disclose additional information over and above the minimum required under the Listing Rules is encouraged to do so.
- 2. If this quarterly cash flow report has been prepared in accordance with Australian Accounting Standards, the definitions in, and provisions of, AASB 6: Exploration for and Evaluation of Mineral Resources and AASB 107: Statement of Cash Flows apply to this report. If this quarterly cash flow report has been prepared in accordance with other accounting standards agreed by ASX pursuant to Listing Rule 19.11A, the corresponding equivalent standards apply to this report.
- 3. Dividends received may be classified either as cash flows from operating activities or cash flows from investing activities, depending on the accounting policy of the entity.
- 4. If this report has been authorised for release to the market by your board of directors, you can insert here: "By the board". If it has been authorised for release to the market by a committee of your board of directors, you can insert here: "By the [name of board committee – eg Audit and Risk Committee]". If it has been authorised for release to the market by a disclosure committee, you can insert here: "By the Disclosure Committee".
- 5. If this report has been authorised for release to the market by your board of directors and you wish to hold yourself out as complying with recommendation 4.2 of the ASX Corporate Governance Council's Corporate Governance Principles and Recommendations, the board should have received a declaration from its CEO and CFO that, in their opinion, the financial records of the entity have been properly maintained, that this report complies with the appropriate accounting standards and gives a true and fair view of the cash flows of the entity, and that their opinion has been formed on the basis of a sound system of risk management and internal control which is operating effectively.